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Problem One: Splitting the Bill
The insight that we used in our solution is that the first person has to pay some amount of money. We
can’t say for certain how much it will be, but we know that it’s going to have to be some amount of
money that’s between zero and the full total. We can then try out every possible way of having them pay
that amount of money, which always leaves the remaining people to split up the part of the bill that the
first person hasn’t paid.

/** 
 * Lists off all ways that the set of people can pay a certain total, assuming
 * that some number of people have already committed to a given set of payments.
 *
 * @param total The total amount to pay.
 * @param people Who needs to pay.
 * @param payments The payments that have been set up so far.
 */
void listPossiblePaymentsRec(int total, const HashSet<string>& people,
                             const HashMap<string, int>& payments) {
    /* Base case: if there's one person left, they have to pay the whole bill. */
    if (people.size() == 1) {
        HashMap<string, int> finalPayments = payments;
        finalPayments[people.first()] = total;
        cout << finalPayments << endl;
    }
    /* Recursive case: The first person has to pay some amount between 0 and the
     * total amount. Try all of those possibilities.
     */
    else {
        for (int payment = 0; payment <= total; payment++) {
            /* Create a new assignment of people to payments in which this first
             * person pays this amount.
             */
            HashMap<string, int> updatedPayments = payments;
            updatedPayments[people.first()] = payment;
            listPossiblePaymentsRec(total – payment, people – people.first(),
                                    updatedPayments);
        }
    }
}

void listPossiblePayments(int total, const HashSet<string>& people) {
    /* Edge cases: we can't pay a negative total, and there must be at least one
     * person.
     */
    if (total < 0) error("Guess you're an employee?");
    if (people.isEmpty()) error("Dine and dash?");

    listPossiblePaymentsRec(total, people, {});
}
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Problem Two: Change We Can Believe In
The idea behind this solution is the following: if we need to make change for zero cents, the only (and,
therefore, best!) option is to use 0 coins. Otherwise, we need to give back at least one coin. What’s the
first coin we should hand back? We don’t know which one it is, but we can say that it’s got to be one of
the coins from our options and that that coin can’t be worth more than the total. So we’ll try each of
those options in turn, see which one ends up requiring the fewest coins for the remainder, then go with
that choice. The code for this is really elegant and is shown here:

/**
 * Given a collection of denominations and an amount to give in change, returns
 * the minimum number of coins required to make change for it.
 *
 * @param cents How many cents we need to give back.
 * @param coins The set of coins we can use.
 * @return The minimum number of coins needed to make change.
 */
int fewestCoinsFor(int cents, const HashSet<int>& coins) {
    /* Base case: You need no coins to give change for no cents. */
    if (cents == 0) {
        return 0;
    }
   /* Recursive case: try each possible coin that doesn’t exceed the total as
     * as our first coin.
     */
    else {
        int bestSoFar = cents + 1; // Can never need this many coins; see why?
        for (int coin: coins) {
           /* If this coin doesn’t exceed the total, try using it. */
           if (coin <= cents) {
               bestSoFar = min(bestSoFar, fewestCoinsFor(cents – coin, coins));
           }
        }
        return bestSoFar + 1; // For the coin we just used.
    }
}

We asked whether memoization would be appropriate here, and the answer is “yes, definitely!” Imagine,
for example, that we’re using this algorithm on US coins, and we want to see the fewest number of coins
required to make change for 10¢. Our options include first using a dime, first using a nickel, and first us-
ing a penny. Both of those latter two routes will eventually want to know the best way to make change
for 5¢, the case where we use a nickel immediately needs to know this, and the case where we first use a
penny will want to know how to do this for 9¢, which eventually needs to know 8¢, etc. down to 5¢.
Without using memoization, we’d end up with a ton of redundant computation, which would slow things
down dramatically. With memoization, this will be lightning fast for most numbers!

Here’s what this might look like:
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/**
 * Given a collection of denominations and an amount to give in change, returns
 * the minimum number of coins required to make change for it. This uses a table
 * to memoize its results.
 *
 * @param cents How many cents we need to give back.
 * @param coins The set of coins we can use.
 * @param memoizedResults A table mapping numbers of cents to the minimum number
 *                        of coins needed to make that total, for memoization.
 * @return The minimum number of coins needed to make change.
 */
int fewestCoinsForMemoized(int cents, const HashSet<int>& coins,
                           HashMap<int, int>& memoizedResults) {
    /* Base case: You need no coins to give change for no cents. */
    if (cents == 0) {
        return 0;
    }
    /* Base case: if we already know the answer, just return it! */
    else if (memoizedResults.containsKey(cents)) {
        return memoizedResults[cents];
    }
   /* Recursive case: try each possible coin that doesn’t exceed the total as
     * as our first coin.
     */
    else {
        int bestSoFar = cents + 1; // More than we ever need; see why?
        for (int coin: coins) {
           /* If this coin doesn’t exceed the total, try using it. */
           if (coin <= cents) {
               int needed = fewestCoinsForMemoized(cents – coin, coins, 
                            memoizedResults);
               bestSoFar = min(bestSoFar, needed);
           }
        }

        /* Store the result for later. */
        int result =  bestSoFar + 1;
        memoizedResults[cents] = result;
        return result;
    }
}

/**
 * Given a collection of denominations and an amount to give in change, returns
 * the minimum number of coins required to make change for it.
 *
 * @param cents How many cents we need to give back.
 * @param coins The set of coins we can use.
 * @return The minimum number of coins needed to make change.
 */
int fewestCoinsFor(int cents, const HashSet<int>& coins) {
    HashMap<int, int> memoizedResults;
    return fewestCoinsForMemoized(cents, coins, memoizedResults);
}
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Problem Three: Ordering Prerequisites
There are a number of different ways to do this. The key insight we used in this solution is that at each
point in time, we can choose any task to do as the next task provided that we’ve already handled all its
prerequisites. That gives us some number of things to try at each step, so we’ll try doing each of them
first.

void listLegalOrderingsRec(const HashMap<string, HashSet<string>>& prereqs,
                           const Vector<string>& tasksPerformed,
                           const HashSet<string>& tasksRemaining) {
    /* Base case: If there are no remaining tasks, output this as one possible
     * option.
     */
    if (tasksRemaining.isEmpty()) {
        cout << tasksPerformed << endl;
        return;
    }

    /* Otherwise, try adding in as a possible next task all tasks that have had
     * all their prerequisites satisfied.
     */

    /* For convenience, convert the vector of tasks into a set. */
    HashSet<string> tasksDone;
    for (string task: tasksPerformed) {
        tasksDone += task;
    }

    for (string task: remainingTasks) {
        if (prereqs[task].isSubsetOf(tasksDone)) {
            Vector<string> newTasks = tasksPerformed;
            newTasks += task;
            listLegalOrderingsRec(prereqs, newTasks, tasksRemaining – task);
        }
    }
}

void listLegalOrderingsOf(const HashMap<string, HashSet<string>>& prereqs) {
    HashSet<string> tasks;
    for (string task: prereqs) {
        tasks.add(task);
    }
    listLegalOrderingsRec(prereqs, {}, tasks);
}
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